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Abstract 

Traditionally, large monolithic intrusion detection systems have been developed that 
operate on a host computer.  These monolithic systems perform the task of monitoring, 
data gathering, data manipulation, data storage, decision making, and alarming. However, 
several significant problems result from using this approach to intrusion detection. These 
problems include: 
 

• Large processing overhead is generated from monitoring activities, generation of 
audit records, the analysis and reduction of audit logs, generation of aggregate 
statistics, and communication and correlation of activities between networked 
systems. 

• Storage space usage is often large and results in at least temporary reduction in 
available disk space.   

• Typically, intrusion detection systems must be completely rebuilt from scratch to 
handle new scenarios. 

• These monolithic approaches result in systems with a single point of failure and 
attack.  

• Finally, scalability into large geographically diverse systems is limited. 

 
We have developed a prototype scalable intrusion detection and response framework that hosts a 
set of intrusion detection and response technologies that demonstrate scalability in a high-
assurance environment and ease of deployment as well has overcoming some of the limitations 
of traditional intrusion detection systems 
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1.0  Summary 

We have developed a Scalable Intrusion Detection and Response Framework.  This framework 
was originally named SIDF.  The name was later changed and presented externally as the Open 
Infrastructure for Scalable Intrusion Detection and Response due to the possibility of confusion 
with the similarly sounding CIDF (the Common Intrusion Detection Framework) that DARPA is 
developing.  We have retained the SIDF acronym on all reports and documentation internally to 
maintain consistency though out the effort.  This report uses the term SIDF to describe the 
framework. 
 
A dictionary defines the word “framework” as “a basic conceptual structure.”  What we 
proposed was a structure that included example code, libraries, processes, and documentation for 
a development environment. This environment will allow a developer to build his/her own 
intrusion detection system without having to know about the low-level, system-dependent details 
such as how to access built-in operating system and hardware security functions, how to make a 
process on one computer communicate to a process on another computer, how to deploy an 
intrusion detection system, etc. 
 
This framework provides an open environment that sustains a wide variety of intrusion detection 
agents. The open architecture of this framework allows for a varying set of agents to be 
developed by a wide range of organizations. 
 
The hierarchically directed agents can be deployed and retracted throughout the network based 
on the perceived threat, operational conditions, mission, or other policy-based criteria. The 
framework allows for the development of new agents, the removal of old or obsolete agents, the 
modification of parameters of operating agents, as well as the dynamic deployment and 
retraction of agents. 
 
This new framework provides a much-needed environment to encourage the development and 
deployment of a vast array of new intrusion detection and response technologies. We expect that 
the use of this framework will lead to the development of a wide range of intrusion detection and 
response solutions that interoperate.  Without this framework, the intrusion detection field will 
continue to be inundated with monolithic, homogeneous, closed-architecture solutions that 
provide limited scalability. 
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2.0 Introduction 

2.1 Framework Introduction 
The Scalable Intrusion Detection and Response Framework (depicted as a hierarchy in Figure 1) 
can logically be represented by four distinct logical layers: the Decision-Response Layer, the 
Analysis Layer, the Reconnaissance Layer, and the Support Layer.  Each layer plays a role in 
detection, alarm, response, deployment, scalability, and support for the framework. 

 
 

Network

Analysis AgentAnalysis Agent

Decision-Response
Agents

Reconnaissance
Agent

Reconnaissance
Agent

Reconnaissance
Agent

Reconnaissance
Agent

Decision-Response Layer

Analysis Layer

Reconnaissance Layer

Directory/Key
Management

Agent

Storage
Agent

Support Layer

 
Figure 1.  SIDF Agent Hierarchy. 

The purpose of the four layers is to divide the typical intrusion detection and response paradigm 
into a set of more manageable components that can easily be distributed throughout a 
geographically diverse heterogeneous environment.  Within each layer, agents are defined and 
each performs specific subfunctions for the entire intrusion detection system.   
 

Each layer defines one or more types of agents.  Several types of agents have been defined; the 
types currently available are Decision-Response, Analysis, Reconnaissance, Directory, and 
Storage.  The type of agent defines its function within the framework.  For example, a 
Reconnaissance type of agent is responsible for monitoring and reporting specific information to 
a superior agent.  Whereas a Directory type agent maintains a directory that lists all the currently 
deployed agents within the framework.  The agents are named based on their type.  A 
Reconnaissance type of agent is known as simply a Reconnaissance Agent and a Directory type 
of agent is known as a Directory Agent, and so.  The list of agents types included in the SIDF are 
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the Directory Agent, Decision-Response Agent, Analysis Agent, Reconnaissance Agent, and 
Storage Agent. 
 

Note that the above figure only represents a conceptual view of the framework and not a physical 
view.  All agents within the framework have network access and each agent may interact with 
other agents by sending messages to each other.  The framework defines the hierarchy of 
communication rules.  The following list represents some of the SIDF communication design 
restrictions: 
 

• Reconnaissance Agents communicate to Analysis Agents 
• Analysis Agents communicate with Decision-Response Agents 
• All agents send and receive messages to and from the Directory Agent 
• Any agent can send messages to the Storage Agent 
• Etc. 

 
Several message formats have been defined within the framework.  These messages are used to 
do everything from reporting status, setting reporting hierarchy, changing configuration 
parameters, etc. 
 
Consider an example physical instantiation of the framework.  This example depicts a four-host 
framework configuration with a variety of deployed agents. 
 

Decision-Response
Agent #625

Network

Analysis Agent #335

Reconnaissance
Agent #23

Analysis Agent #336

Reconnaissance
Agent #56

Storage Agent #1 Directory / Key
Management Agent #1

Host #4

Host #7

Host #3Host #8

Agent GuardAgent Guard

Agent Guard

Agent Guard

 
Figure 2.  Physical Instantiation of SIDF. 
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2.2 Framework Operation 
The SIDF framework developed on this project consists of a set of components known as 
“agents” and framework control applications.  The framework control applications are the 
Deployment Center and the Agent Guard.  These applications are not agents (as we defined the 
term for this project).  The Deployment Center and Agent Guard handle agent deployment, 
messaging and data encryption.  The Deployment Center acts as the control module for the 
framework, allowing instantiation of the framework, configuration of host encryption keys, and 
storage of agent executables.  After configuration of encryption tokens, installation of the 
Deployment Center and Agent Guards, creation of agent executables, and general framework 
setup, the framework can be put into operation. 
 
Before utilization of the SIDF, several steps must be taken to configure the deployment 
environment.  The Deployment Center must be installed and a Deployment Center token must be 
created.  Tokens must also be created for each host participating in the SIDF, and a set of agent 
executables needs to be built.  Figure 3 illustrates how an agent is deployed in the SIDF (also 
known as the deployment process.) 
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Deployment Process: 
  

• An agent is selected from the Agent Executables Database. 
• A host is selected from the Host Database (a list of hosts assigned encryption keys). 
• The selected agent executable is encrypted with the public key of the receiving host, in 

the figure this would be Host A. 
• The encrypted agent executable (illustrated as a screenshot with a padlock on it) is 

transmitted to Host A from the Deployment Center. 
• The Agent Guard on Host A receives the file, decrypts it, verifies the sender, and starts it 

executing on Host A. 
• This process can be repeated several times, transmitting agents to the same or other hosts. 
• Once the framework is populated with multiple agents, the hosts and agents will 

intercommunicate with framework-defined messages. 

Token

Deployment Center Host
Agent Executables

DatabaseAgent1

Agent2

Agent3

Agent4

Agent5

Trusted Host
(Secure Machine with Physical Security)

Host Database
Host A
Host B

Agent Status
Database

Token

Agent
Host A

Agent Guard Token

Agent
Host N

Agent Guard

……………………

Token Certificate
Authority

Deployment Center

 
Figure 3.  Framework Usage. 

 

2.3 Framework Components 
The SIDF consists of the following applications: the Deployment Center, Agent Guard, 
Directory Agent, Decision-Response Agent, Analysis Agent, Reconnaissance Agent, and Storage 
Agent.  Some of these applications have been specialized and multiple versions delivered.  For 
example, this project’s requirements stated that four Reconnaissance Agents, and two Analysis 
Agents must be developed.  Each agent has been customized with particular specialized 
functionality.  Figure 4 illustrates several of the developed SIDF applications. 
 



 

 6
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Agent Guard

Windows NT
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Windows NT
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Agent

Linux Host
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Deployment Center Host

   Token
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Figure 4.  Example Framework Environment. 

Several SIDF applications have been developed, some of which are illustrated in the figure 
above.  A complete list follows, along with a brief description. 
 

• Deployment Center – initiates the framework; configures, issues and maintains the 
encryption keys for the other framework hosts; and controls the deployment of agents to 
other hosts. 

• NT Agent Guard – receives deployed agent executables, initiates the execution of the 
agent on the host, and controls all local and external framework messaging. 

• Base Agent – represents the basic SIDF agent configuration and attributes that all other 
agents inherit. 

• Directory Agent – maintains a list of agents deployed in the framework.  Additionally 
this agent stores the public keys of the other hosts in the framework. 

• Decision-Response Agent – receives reports from one or more Analysis Agents and can 
be configured to perform user-initiated responses based on information received. 

• NT Analysis Agent – receives reports from one or more Reconnaissance Agents.  The 
Analysis Agent need to “understand” the information that a Reconnaissance Agent sends. 
Thus, the pairing of Analysis Agents to Reconnaissance Agents should be based on 
similar monitoring activities (e.g., TCP/IP Reconnaissance Agents should be paired with 
TCP/IP Analysis Agents).  The Analysis Agents also report information periodically to a 
Decision-Response Agent. 

• Linux Analysis Agent – configures, controls, and receives reports from the Linux 
Reconnaissance Agent. The Analysis Agent also reports information periodically to a 
Decision-Response Agent. 

• Ethernet Capture (TCPSniffer) Control – provides a programming interface to an 
installed TCP/IP protocol capture stack that allows the TCP/IP packets’ header and 
content to be examined. 
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• TCP/IP Display Reconnaissance Agent – displays information associated with the 
Ethernet traffic passing through the network segment to which the host system is 
connected.  This agent uses the TCPSniffer stack to capture TCP/IP packets. 

• Immunology-based Reconnaissance Agent – monitors incoming packets and compares 
the packet content to a self-database.  Packets that do not meet the database’s criteria are 
flagged and a message sent to an Analysis Agent.  This agent uses the TCPSniffer stack 
to capture TCP/IP packets. 

• Traffic Analysis Reconnaissance Agent – analyzes and reports to an Analysis Agent such 
network traffic data as the number, type, and content of packets that it has monitored 
during a specified time period.  This agent uses the TCPSniffer stack to capture TCP/IP 
packets. 

• Linux Reconnaissance Agent – runs under Red Hat Linux v5.2.  This agent 
communicates directly to the Linux Analysis Agent running on an NT computer.  This 
Analysis Agent is similar to a proxy server--it has been specifically created to 
communicate with the Linux Reconnaissance Agent. This agent monitors changes to 
system-specific files and reports status information to the Analysis Agent. 

• Storage Agent – acts as an event-logging agent for the framework.  Any SIDF component 
can issue a message to be logged by a Storage Agent. 

2.4 Framework Operation 
Each of the agent components provides the SIDF framework’s intrusion detection and response 
functions.  The Deployment Center and the Agent Guards (Figure 5) make up the control and 
security components.  The Deployment Center and Agent Guard control the starting up of every 
agent in the SIDF and provide the communications between components. 
 

Agent Executables
Database

Agent1

Agent2

Agent3

Agent4

Agent5

A
ge

nt
 G

ua
rd

A
gent G

uard

Host A Host B

Deployment Center

Host DatabaseHost A
Host B

 
Figure 5.  Deployment Center and Agent Guards. 
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The Deployment Center transmits (deploys) agent binaries to hosts for execution.  The 
Deployment Center creates and maintains the security keys for all hosts.  It can issue a limited 
set of remote commands to SIDF components.  The only entity on the network and within the 
SIDF that the Deployment Center directly communicates with is the remote host’s Agent Guard.  
At the SIDF’s startup time, the Deployment Center knows of all hosts that can possibly 
participate in the framework.  
 
The Agent Guard is a process that runs on each SIDF host computer, listening for the SIDF 
Deployment Center or other Agent Guards to issue SIDF commands to it on a predefined port 
before responding appropriately.  Any host participating in the SIDF must have an Agent Guard 
running on it.  However, there is only one Deployment Center in any instance of the SIDF. 
 
Figure 5 illustrates a simple SIDF configuration consisting of three computers.  The Deployment 
Center runs on a trusted host. It has a database of host information and a database of agent 
executables that have been previously created.  These agents include Decision-Response Agents, 
Analysis Agents, Reconnaissance Agents, Directory/Key Management Agents, and Storage 
Agents.  Several of the agents are actually specialized applications--that is, agent code is already 
written and requires little to no configuration (namely the Decision-Response Agents, Storage 
Agents, and Directory/Key Management Agents).  Others are customized agents (specialized 
Analysis Agents and Reconnaissance Agents) that developers have created to monitor and 
analyze particular system or network parameters.   Many different specialized agents coexist in 
any SIDF instantiation; the number, type, and function of these agents depends on the type of 
information monitored and the rules programmed in the agent’s code. 
 
The Deployment Center allows the SIDF administrator to assign any agent from the agent 
database to execute on a targeted host.  The targeted host must run an Agent Guard to 
communicate with the Deployment Center.  In this example, either Host A or Host B could be 
selected as a target host.  An agent binary selected from the Deployment Center’s agent database 
would be transferred to the Agent Guard on the host; the agent program would then start 
executing. 
 
The Agent Guards are responsible for instituting the security features that SIDF agents require.  
We have designed the SIDF in this fashion so that the complexities of host-based security could 
be centrally controlled, thus making the SIDF more secure.  To this end, the Agent Guard acts as 
a gateway/intermediary between agents on different hosts. 

2.5 SIDF Security 
In our Scalable Intrusion Detection and Response Framework, we do not assume any inherent 
security in the network to which the SIDF is applied.  In particular, we admit the possibility of 
malicious entities manipulating either a) agent-to-agent communications or b) the agents 
themselves.  Given this, the SIDF must inherently provide security for intrusion detection agent 
deployment and operations. Therefore, we designed security into our framework from the 
beginning, as opposed adding it as an afterthought. 
  
The SIDF provides protection of functions and communication using hardware-based security, 
because the level of protection these devices provided was deemed essential to the framework 
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based on the types of information that it could potentially access.  Two types of hardware 
encryption devices are employed in the SIDF.  These hardware devices are the Chrysalis-ITS 
Luna 2 token and Datakey’s SignaSURE Datakey (both pictured below).  

Chrysalis-ITS Luna 2
PCMCIA Encryption
Token

Datakey SignaSURE
Encryption Keys and
Readers  

Figure 6.  SIDF Hardware Encryption Devices. 
 
Originally, the SIDF was designed and built exclusively using Luna2 tokens.  There is a cost 
associated with adding hardware-based encryption devices to any system, but Luna2 tokens are 
especially expensive.  A single Luna2 PCMCIA security token costs approximately $800 and 
requires the installation of a PCMCIA reader (because one usually isn’t included in most desktop 
PC configurations). 
 
At the start of this project, the Luna 2 tokens cost about $300, with an expected cost that would 
decrease to less than $100 per token as the technology matured.  Since the manufacturer was 
unsuccessful in selling its product in the client market, the company increased the price and 
targeted the higher-end server market.   
 
To address this issue, we have investigated alternative hardware solutions.  We found our 
solution with Datakey.  This hardware device is a combination reader and key (or card) that 
plugs into a standard serial port of a PC--there is no additional hardware required.  The 
performance (speed of encryption/decryption operations) is less than a Luna 2 token, but is 
acceptable.  The Datakey devices provide similar PKCS functionality and cost about $100 each.   
 
We incorporated Datakey into the framework by providing the option of having an NT Agent 
Guard use a Luna 2 token or a Datakey as the host’s encryption device.  The Deployment Center 
requires one Luna 2 token, but can issue Luna or Datakey NT Agent Guard keys.   
  
Figure 7 illustrates the security implementation used in the SIDF. 
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Figure 7.  SIDF Security Implementation. 
 
As shown in Figure 7, the Deployment Center host has a cryptographic token (Luna 2) installed 
in it.  The host is a physically secured, trusted computer.  Before SIDF instantiation, tokens 
(Luna or Datakey) are created at the Deployment Center for each host on the network.  Each host 
will have one token containing a signing and a wrapping pair of keys.  A copy of the public 
signing and wrapping key will be maintained in the token on the Deployment Center host. 
 
When an agent is first registered with the Directory Agent, copies of the local host’s public keys 
are sent to the Directory Agent.  The Directory Agent maintains a table of public keys that the 
SIDF uses.  Messages have been defined in the SIDF message grammar for retrieval and update 
of the Directory Agent’s public key list.  In addition, public keys can be transmitted from the 
Deployment Center to a specified host.  The transmittal of public keys within the SIDF is 
important because all messages between hosts are encrypted specifically from the sending host to 
the receiving host.  Hosts cannot communicate with each other until they have exchanged public 
keys.  Once keys are exchanged during a SIDF session, the keys are stored permanently on the 
hardware encryption token and can be used in the future.  Note that private keys are never 
removed from the hardware token, nor are they ever exposed.  This is one of the hardware 
device’s main strengths, along with the necessity that users of the framework need a password to 
enable the SIDF’s functions.  
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3.0 Methods, Assumptions, and Procedures 

This effort’s main focus was the development of a mostly PC-based framework that could be 
useful in the field of Intrusion Detection.  We have observed that at the time of our initial 
proposal for this effort, most intrusion detection systems (IDSs) were built on Unix systems and 
were generally large and required many system resources to operate.   
 
Our goal was to produce a framework that would lead to the quicker development of new 
intrusion detection and response systems by first building a framework that could be used on 
cheaper and more easily configurable Windows-based PCs.  Building a framework with reusable 
and interoperable components would allow new/future IDS builders the ability to concentrate 
their development on the problem at hand (building new algorithms to detect the new attack) 
instead of “reinventing the wheel” each time (determining how to capture the data, thinking 
about how to securely store the monitored data, determining a method to effective store the data, 
etc.) 
 
We had to make several assumptions in our initial prototype framework.  First and foremost, we 
selected Windows NT 4.0 as the main targeted environment.  Windows NT provides several 
built-in security features and has a quickly increasing user base.  As mentioned above, several 
Unix versions of IDSs exist but not that many for PCs.  We wanted to increase the number of ID 
systems that could be created for the PC.  Also since several companies are rapidly purchasing 
PC systems and transferring functions from larger workstations/minicomputers to PCs, the risk 
to PC systems is greatly increasing as PCs become targets of more types of attacks. 
 
Secondly, we wanted to assure any would-be user and IDS developer that the framework that we 
created would be secure.  Therefore, we built hardware-based encryption into the system.  The 
framework is controlled using messages to and from multiple systems.  Each message and 
request is encrypted so that the message cannot be deciphered outside of the application.  
Moreover, each message is signed so that it can be authenticated when received. 
 
Third, to create a “developer-friendly” environment, we selected a visual development tool to 
create the framework.  The final framework consists of base forms and code that developers can 
modify as required to build new customized ID agents and systems.  The environment that we 
have used is Borland Delphi Professional v3.02. 
  
As with any development framework, designers face some inherent constraints.  The following 
are the constraints that we identified within the SIDF: 

• Requires an order of installation/startup of framework. 
• Is developed in Borland Delphi Professional v3.02 and requires the developer to continue 

to develop in Delphi. 
• Uses third-party components. 

 
Based on the above constraints and the prototyped version of the SIDF, the following limitations 
are recognized: 

• Limited portability. 
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• Limited number of currently developed agents. 
• Sophistication of developed agents needs to be improved. 
• Greater detail needs to be incorporated into reporting functions. 
• Additional messages and configuration functions should be added.  

3.1 Technical Approach 
At the start of this project, we reviewed the technology available within Odyssey Research and 
the Intrusion Detection community.  We analyzed the requirements that we needed to incorporate 
into the framework, and created an initial design of the SIDF intrusion detection architecture. 
 
During this time, DARPA began discussions on the creation of a Common Intrusion Detection 
Framework (CIDF) standard.  We assisted the committee by submitting a set of intrusion 
detection APIs to the CIDF working group for discussion and incorporation.  We also had an 
ORA staff member sit on the committee during the development of the CIDF standard. 
 
The CIDF standard’s goal and its set of APIs is to allow open access to intrusion detection 
analysis modules, database records, input event monitors, and intrusion response modules.  Since 
this goal was very similar to ours, our cooperation benefited both the CIDF and the SIDF by 
incorporating our SIDF design ideas into the CIDF standard.  Thus, the SIDF would be 
compatible with the CIDF as the CIDF standard matures.   
 
It is also important to differentiate SIDF from CIDF.  When we originally proposed the SIDF, 
CIDF did not exist.  The CIDF grew out of DARPA’s increasing need to have multiple 
contractors interface to each other.  ORA was in the initial meetings on CIDF, and we continue 
to play a lead role in the standard’s development.  The main distinction between the two is that 
CIDF is a standard and whereas SIDF is an implementation (of a standard.)  Unfortunately, the 
CIDF was in continual development during the SIDF project’s life and continues to change 
today.  Keeping this in mind, the SIDF has been designed with a flexible message grammar that 
could be adapted.  In addition, most of the SIDF components map directly to CIDF components.  
 
One of the first things that we did in the implementation of the SIDF was to prototype agent-to-
agent communication based on our draft protocol specification.  We created a Base Agent class 
to support a minimum set of the properties, including basic identification information, 
client/server support, cryptographic functions, and directory access behaviors.  We then drafted 
versions of Reconnaissance Agent, Analysis Agent, and Decision-Response Agent classes.  All 
this initial work was done in C++. 
 
A testbed of two computers was created in which we could deploy the agents and test the basic 
functions of each class. 
 
After some initial prototype work, we started part of the large SIDF documentation effort.  We 
wrote the draft specification for the protocol to be used for intra-agent communication.  The 
protocol, our secure agent management protocol, was based on TCP/IP and allowed agents to 
communicate and interact.  The agent communication requirements followed those specified in 
the SIDF documentation.  
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We defined the agent communication hierarchy such that all agents would be directly accessible 
over the network.  However, framework communication would be restricted to specified 
channels, such as Decision-Response Agent to Analysis Agent, Analysis Agent to Decision-
Response Agent, Reconnaissance Agent to Analysis Agent, etc..  Other channels, such as 
Reconnaissance Agent to Decision-Response Agent, were not allowed. 
 
In our original proposal, we identified several types of agents.  Two new agents were introduced:  
the Storage Agent and the Directory/Key Management Agent.  We added these agents to provide 
a method to audit and keep track of each agent within the network. 
 
The Scalable Intrusion Detection and Response Framework System Specification document was 
written and contained all the framework’s requirements.  We used this document as the basis of 
the framework and prototype development for the SIDF project.  For ease of requirements 
tracking, all the SIDF requirements were specified in table format and uniquely numbered. 
 
The Scalable Intrusion Detection and Response Framework Architecture Specification was 
written and specified the structure of the SIDF framework and the agents that it would contain.  
Originally, the framework only consisted of five agents: 
 

• Decision-Response Agent 
• Analysis Agent 
• Reconnaissance Agent 
• Storage Agent 
• Directory/Key Management Agent 

 
The interaction and functions of each agent were described within this specification.  An object 
class structure was designed to illustrate the functions and properties of each type of agent. 
 
The Agent Guide for Development provided information that would allow a software 
designer/programmer to use the framework to implement each of the agent types.  The document 
contained the definitions of the agent classes along with the required C++ include files.    
 
Agent specifications were designed using a C++ object-oriented paradigm.  Each agent type was 
designed as a separate class.  Creation of an agent was accomplished through instantiation of the 
specified agent class.  Each agent class inherited its lowest-level data structures and functions 
from a base class.  We later wrote the Agent Guide for Development document after we migrated 
the development environment from C++. 
 
The next step was to concretely define the processes of agent communication, initialization, 
deployment, and retraction.  We could then better prototype a method for these functions.   
 
We found that several difficulties existed when setting up the SIDF environment.  Particularly, 
configuring agents when each starts up may pose a problem since the SIDF hierarchy requires 
parent-to-sibling communication.  The problem was resolved by imposing an ‘ordering’ to the 
process of starting up and shutting down agents.  The ordering problem has been mostly 
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eliminated in the final SIDF version.  The main framework startup requirement that currently 
exists is that the Directory Agent must be the first agent deployed in a SIDF instantiation and 
other agents must be notified of the Directory Agent’s location. 
 
The ease of use, and the ability to reuse agent code, were very important requirements in the 
design of the SIDF.  The initial prototype efforts focused on representing each type of agent as 
an object class (i.e., Reconnaissance Agent class, Analysis Agent class, Decision-Response 
Agent class, etc.).  We then implemented the abstract view of agent objects as C++ classes.  
Although this representation was very common in the software development world, it required a 
developer of new agents to know intimate knowledge of the C++ agent class structures and the 
use of the behaviors associated with them.  
 
To make the technology developed from this project more useable, we started to look at the 
ability to turn each agent object into a component such that it could just be “dragged-and-
dropped” onto a form in a visual environment such as Borland Delphi or Microsoft Visual Basic. 
  
The SIDF System Design Description document described the SIDF design decisions, the SIDF 
architectural design, and the detailed design needed to implement the framework.  The design 
was described by looking at, and defining each of the agents that was to be implemented.  A set 
of agents was to be developed at each level of the hierarchy of the SIDF framework: one 
Decision-Response Agent, two Analysis Agents, and four Reconnaissance Agents.  Additionally, 
we needed to design and develop at least one of each support agent (Storage Agent and 
Directory/Key Management Agent), too.  Also we specified class hierarchies, and defined the 
specific properties, methods, and events available for each class of agent. 
 
We found several inherent problems in the SIDF’s proof of concept version’s internal design 
with respect to the deployment and retraction processes.  These problems related to the ability to 
deploy and start executing software on remote computers.  Simply stated, it was difficult to 
figure out a way to pass a program to a remote computer and have it start executing.  First, this 
process could not be done securely since the destination host did not have any encryption 
(keying) information.  And secondly how would the destination host wait for, accept, and start 
running the transmitted agent software?  Assuming that we could work out the initial deployment 
problems, how would the agent be configured and controlled? 
 
Our first approach was a manually oriented deployment scheme and was plagued with potential 
faults.  A new design was proposed that had many benefits, including improved security and 
simplification of agent development.  At the very top level of the newly proposed SIDF (above 
the agent level), we introduced the SIDF Deployment Center and the Agent Guards. The 
Deployment Center would be responsible for transmitting commands and agent binaries to hosts 
for ultimate execution.  At framework startup time, the Deployment Center would know of all 
hosts that could possibly participate in the framework.  The Deployment Center would issue 
commands directly to an Agent Guard.  There would only be one Deployment Center in any 
instance of the SIDF. 
 
The Agent Guards would passively listen for commands from the Deployment Center. Any host 
that would participate in the SIDF would have an Agent Guard running on it.  All SIDF 
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communication security would be handled in a centralized fashion at this level.  The SIDF 
provided protection of agent functionality and communication using hardware-based security at 
the Deployment Center/Agent Guard level. 
 
We employed a rapid prototyping approach to develop the new NT Agent Guard and 
Deployment Center.  We first started building an NT Agent Guard prototype.  The Agent Guard 
was developed in Borland Delphi and used SMARTCrypt™ for data and message encryption.  
Functions were created to construct, sign, and accept Deployment Center messages.  The 
packaged messages were received, verified, unpackaged, and executed. 
 
The deployment messages followed the design as defined in the SIDF Framework Detailed 
Design document.  Example messages were constructed and the encryption functions were 
written to test basic functionality.  Signing and wrapping functions used 1,024 or 2,048-bit RSA 
keys.  DES was used for session keys.  We then implemented several of the security functions 
and incorporated the basic deployment functions into the Deployment Center. 
  
Next, we started preliminary coding of an NT-based Ethernet traffic-capturing component.  We 
drafted the design of an NT-based Ethernet traffic-capturing (TCPSniffer) component , and we 
created a design document.  Many of the demonstration Reconnaissance Agents rely on passive 
collection of network packets.  This component provided the ability to selectively capture and 
parse the network packets that meet specified criteria.  The selection criteria can be changed 
during runtime agent reconfiguration. 
 
An initial Base Agent was then drafted in Delphi and a Directory Agent was created to inherit 
the Base Agent.  We used the Directory Agent for testing and building-up the Base Agent.  
Agent-to-agent communication was drafted into the Base Agent, and we tested it with the 
example Directory Agent.  From these prototypes, we created each of the other agents. 
 
We then prototyped the complete Deployment Center.  The design and implementation of a Unix 
version of a Reconnaissance Agent followed.  We then tested the deployment function.  An 
example agent executable was encrypted, transmitted from the Deployment Center to a second 
system, received, decrypted, verified, and executed on the second system.  At this point, we 
knew that our deployment concept worked. 
 
As our work continued on the prototype development, initial versions of a Base Agent, a 
Directory Agent, a Reconnaissance Agent, an Agent Guard, and the Deployment Center were 
baselined.  Each component was continually improved through refinement and addition of new 
features.   
 
At this point, we introduced a new hardware-based security implementation (Datakey) into the 
framework. The cost issue of the hardware security devices was raised. We investigated other 
possible implementations of PKCS-11 because the Luna solution was expensive, and found that 
Datakey was an acceptable solution. 
 
We created a more formal testbed in our Lab, and we devised a series of phases to build the 
prototype framework.  Each phase incorporated some additional feature, or added an option to 
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one or more SIDF components.  This approach provided us with a flexible environment with 
which we could test each new build of a component.   
 
Several messages are sent between components of the SIDF and the message types, along with 
the syntax and number of them, may need to be changed periodically.  This could be 
problematic, since the message parsing modules would need to be rewritten when message 
changes are made.  We created a message grammar that makes a table-driven parsing routine for 
messages.  This feature provided for expansion and flexibility of framework component 
messaging.  The message grammar is described in detail in the SIDF Agent Guide for 
Development Specification [SIDF-AGDS-TM-99-0003-Rev00-(9904)]. 
 
We continued to add features and functionality to each component of the framework.  The 
testbed (which consisted of four computers) was used to test new functionality of the 
components. 
 
One of the final steps was to integrate the Linux components into our testbed along with all the 
other SIDF components including versions of Base Agents, Directory Agents, Reconnaissance 
Agents, Analysis Agents, Decision-Response Agents, Agent Guards, and the Deployment 
Center. 
 
We currently have a set of components that can be used for testing and operation of the SIDF.  
These components represent the baseline of our SIDF prototype development.  Section 4.2 lists 
suggested changes and improvements that could be made to the SIDF. 

3.2 SIDF Refinement 
The future of the SIDF lies in the hands of the IDS developers.  Through use, the future SIDF 
maintainers and developers will find and improve the current limitations of the SIDF, further 
adapting it for needs of intrusion detection and other environments.  Several suggested 
refinements can be found in Section 4.2. 
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4.0 Results and Discussion 

The following sections list this effort’s final results.  Since this effort was mainly a design and 
development effort, the bulk of the results consist of documentation, application source code, and 
executable files. 
 
The documentation, source code, and executable files are delivered with this final report on CD-
ROM. 

4.1 Deliverables 
The deliverables on this contract consist of documentation and applications.  These items have 
been created and delivered during this contract: 

• Framework Documentation 
• Deployment Center 
• NT Agent Guard 
• Base Agent 
• Directory Agent 
• Decision-Response Agent 
• NT Analysis Agent 
• Linux Analysis Agent 
• Ethernet Capture Reconnaissance Agent 
• TCP/IP Display Reconnaissance Agent 
• Traffic Analysis Reconnaissance Agent 
• Immunology-base Reconnaissance Agent 
• Linux Reconnaissance Agent 
• Storage Agent 

 
The following sections explain each of the bulleted items in the above list. 
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4.1.1 Framework Documentation 
An extensive set of project documentation was written to describe, design, and develop the SIDF 
framework.  The following table lists each of the documents delivered: 

Table 1.  SIDF Documentation Set 
Document Title Document Number 

Scalable Intrusion Detection and Response Framework System 
Specification 

SIDF-SS-TM-97-0032-
Rev00-(9712) 

Scalable Intrusion Detection and Response Framework Architecture 
Specification 

SIDF-AS-TM-98-0002-
Rev00-(9803) 

Scalable Intrusion Detection and Response Agent Interface Control 
Document 

SIDF-ICD-TM-98-0003-
Rev00-(9803) 

Scalable Intrusion Detection and Response Framework Detailed Design 
document 

SIDF-FDD-TM-98-0004-
Rev00-(9804) 

TCPSniffer Design document N/A 
Unix Reconnaissance Agent/NT Proxy Agent Design document N/A 
An Open Infrastructure for Scalable Intrusion Detection TM-98-0023 
Scalable Intrusion Detection and Response Framework Software Test 
Description 

SIDF-STD-TM-99-0002-
Rev00-(9904) 

Scalable Intrusion Detection and Response Framework Agent Guide for 
Development Specification 

SIDF-AGDS-TM-99-
0003-Rev00-(9904) 

Scalable Intrusion Detection and Response Framework Final Report SIDF-FRPT-TM-99-
0004-Rev00-(9904) 

 
A softcopy of each of these documents is provided on the CD-ROM delivered with this report. 

4.1.2 Deployment Center 
The Deployment Center initiates the framework, configures, issues and maintains the encryption 
keys for the other framework hosts, and controls the deployment of agents to other hosts.  A 
copy of the main Deployment Center screen follows.  Additional screen images and descriptions 
of all Deployment Center functions can be found in the SIDF Software Test Description [SIDF-
STD-TM-99-0002-Rev00-(9904)]. 
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Figure 8.  Deployment Center Main Screen. 

 

4.1.3 Agent Guard 
The Agent Guards receive deployed agent executables, initiates the execution of the agent on the 
host, and controls all local and external framework messaging. A copy of the main Agent Guard 
screen follows.  Additional screen images and descriptions of all Agent Guard functions can be 
found in the SIDF Software Test Description [SIDF-STD-TM-99-0002-Rev00-(9904)]. 
 

 
Figure 9.  Agent Guard Main Screen. 



 

 20

4.1.4 Directory Agent 
The Directory Agent maintains a list of each agent deployed in the framework.  Additionally this 
agent stores the public keys of the other hosts in the framework.  A copy of the Directory Agent 
screen follows. 
 

 
Figure 10.  Directory Agent. 

4.1.5 Decision-Response Agent 
The Decision-Response Agent receives reports from one or more Analysis Agents and can be 
configured to perform user-initiated reactionary responses based on information received. A 
copy of the Decision-Response Agent screen follows. 
 

 
Figure 11.  Decision-Response Agent. 
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4.1.6 Analysis Agents 
The Analysis Agent receives reports from one or more Reconnaissance Agents.  The Analysis 
Agents need to “understand” the information that a Reconnaissance Agent sends. Thus, the 
pairing of Analysis Agents to Reconnaissance Agents should be based on similar monitoring 
activities (e.g., TCP/IP Reconnaissance Agents should be paired with TCP/IP Analysis Agents).  
The Analysis Agents also report information periodically to a Decision-Response Agent.  Two 
Analysis Agents have been built during this effort. 

4.1.6.1 NT-based Analysis Agent 
This first Analysis Agent runs on NT and specifically communicates with the three NT 
Reconnaissance Agents.  It issues reports to the Decision-Response Agent.  This agent’s 
interface is not very detailed (and is not presented here) because the main function of this agent 
is to collect data for multiple Reconnaissance Agents. 

4.1.6.2 Linux-based Analysis Agent 
This Analysis Agent is NT-based, but it communicates with the Linux Reconnaissance Agent.  
This agent configures, controls, and receives reports from the Linux Reconnaissance Agent. A 
copy of the Linux-based Analysis Agent screen follows. 
 

 
Figure 12.  Linux Analysis Agent. 
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4.1.7 Reconnaissance Agents 
Reconnaissance Agents collect information, perform a preliminary analysis, and report 
significant findings to Analysis Agents.  A Reconnaissance Agent can be designed to be as 
specialized as a developer desires it to be.  It can collect and report a variety of information to an 
Analysis Agent.  The type, reporting interval, and quantity of data reported depends on how 
much data reduction is needed and what will be done with it.  Reconnaissance Agents generally 
collect host state information such as the TCP/IP packets received, process information, event 
log data, system status, resource utilization, etc.  We developed four Reconnaissance Agents on 
this project.  These Reconnaissance Agents are presented as samples of the kind of functionality 
a Reconnaissance Agent could perform.  Although these agents are presented here, they should 
not be viewed as complete ID components.  Developers must review their needs and scope the 
functionality of each agent appropriately.  

4.1.7.1 TCP/IP Display Reconnaissance Agent 
This Reconnaissance Agent displays information associated with the Ethernet traffic passing 
through the network segment to which the host system is connected.  This agent uses the 
TCPSniffer stack to capture TCP/IP packets.  Although many Reconnaissance Agents will 
operate without operator guidance, this agent is an interactive agent.  Buttons and fields are 
available to control the agent.  The agent can also be controlled remotely with SIDF commands 
from an Agent Guard or an Analysis Agent.  This agent captures each TCP/IP packet that passed 
on the network, and then it parses and displays each field of the packet.  The user specifies the 
level of detail for display.  For example, packet content can be displayed if desired--the agent is 
configurable.  This means that IP addresses and ports can be entered to select the types of 
packets displayed. A copy of the agent’s screen follows. 
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Figure 13.  TCP/IP Display Reconnaissance Agent. 

4.1.7.2 Traffic Analysis Reconnaissance Agent 
The Traffic Analysis Reconnaissance Agent analyzes and reports to an Analysis Agent such 
network traffic data as the number, type, and content of packets that it has monitored during a 
specified time period.  This agent uses the TCPSniffer stack to capture TCP/IP packets. A copy 
of the agent’s screen follows. 
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Figure 14.  Traffic Analysis Reconnaissance Agent. 

4.1.7.3 Immunology-based Reconnaissance Agent 
The immunology-based Reconnaissance Agent monitors incoming packets and compares the 
packet content to a self-database.  Packets that do not meet the criteria of the database will be 
flagged and a message sent to an Analysis Agent.  This agent uses the TCPSniffer stack to 
capture TCP/IP packets. A copy of the agent’s screen follows. 
 

 
Figure 15.  Immunology Reconnaissance Agent. 

4.1.7.4 Linux Reconnaissance Agent 
This Reconnaissance Agent runs under Red Hat Linux v5.2.  This agent communicates directly 
to a Linux Analysis Agent running on an NT computer.  This analysis agent can configure and 
control the Linux Reconnaissance Agent.  The Linux Reconnaissance Agent monitors changes to 
system-specific files and reports status information to the Analysis Agent.  This application is 
nongraphical. 
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4.1.8 Storage Agent 
The Storage Agent acts as an event-logging agent for the framework.  Any SIDF component can 
issue a message to be logged by a Storage Agent.  This application is nongraphical. 

4.2 The Future of SIDF 
As is the case with any software development effort, the technology and software applications 
cannot just be stored on a shelf.  Development must continue, and the technology matured and 
refined.  The SIDF represents a concrete technology adaptation for the use of agent technology 
within the IDS environment. 
 
We have successfully implemented a prototype version of the SIDF with a set of example agents.  
Throughout the development, we found instances where improvements could be made to either 
the framework or the framework’s components.  Each suggested improvement will be discussed 
in the following sections.  The benefits and associated implications are annotated with each 
suggestion.    

4.2.1 Provide the Agent as an ActiveX Control 
Instead of having developers modify Delphi control, the Base Agent, Directory Agent, etc. could 
be turned into ActiveX controls.  Creation of ActiveX controls would enable us to use the 
agent’s skeleton code in any environment that supports ActiveX integration.  More importantly, 
this change would uncouple the development of new agents from the Delphi environment 
currently required.  Other development environments could be used such as Java or Visual Basic. 
 
It is envisioned that a developer would load the application development environment of his 
choosing and select the desired agent type from a palette of ActiveX agent controls.  If he wanted 
to create an Analysis Agent, an “Analysis Agent” control would be placed on the developer’s 
form.  Access to the agent’s properties would be conducted through the properties screen of the 
development environment.  Customized event handlers could be implemented by exposing the 
message handling functions through the event properties screen. 
 
This improvement would provide an independent development method for new agent 
implementation, and it should be performed once other improvements are made.  The creation of 
an ActiveX control is not difficult.  But installation of the control into a development 
environment is not as dynamic as just changing some code and recompiling the application.  The 
ActiveX control usually needs to be unregistered, moved to a system directory, and installed.    
Therefore, we suggest that once the prototype framework has undergone some “field-testing,” 
then creating ActiveX controls would be advisable. 

4.2.2 Fault Tolerance Communication  
Improvement in the fault tolerance of agent communication needs to be addressed.  The 
framework uses TCP/IP for communication.  The TCP/IP protocol guarantees delivery of the 
message, as opposed to other protocols (such as UDP), which do not.  In addition, the framework 
uses buffered sockets, which ensures that the complete message is delivered.  However, the 
current communication scheme does not guarantee that messages from one agent actually get to 
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another agent.  Since one or two Agent Guards act as intermediaries in the communication 
between agents, the Agent Guard may not be able to deliver the message due to problems it 
encounters.  In some cases, a message may be sent to the initiating agent.  For example, a 
message sent from Agent 1 to Agent 2 on the same host will go through the local Agent Guard.  
Agent 1 sends the message to the Agent Guard.  Next the Agent Guard tries to deliver the 
message to Agent 2.  If Agent 2 is not responding or has terminated, the Agent Guard will send a 
message back to Agent 1 indicating the termination of Agent 2.  But if the Agent Guard does not 
receive any errors from Agent 2 and Agent 1 does not receive any errors or notification from the 
Agent Guard, then the message is assumed to have been delivered to Agent 2. 
 
A simple addition to the messaging protocol would be a requirement that an acknowledgement 
be sent for every message sent in the framework.  A couple of problems surface with this 
suggestion’s implementation, namely the message traffic in the framework will double, and there 
must be a way to associate acknowledgements with messages. 

4.2.3 Improve Security of Communication 
The security of framework communication needs to be upgraded.  Although framework 
communication is encrypted, it is still susceptible to attack.  Since the Agent Guard and the 
Deployment Center are listening on TCP ports, they are susceptible to all the same kind of 
network-based port flooding attacks as any other network-based system.  All the 
communications that the Agent Guards and the Deployment Center obtain from the TCP ports 
are encrypted.  However, to determine if the message is valid, it first is collected from the socket, 
and an attempt is made to decrypt it.  Noticeably invalid messages will be discarded, but useless 
processing of the message will have taken place.   
 
Possible solutions to a flooding attack or denial of service would be to only accept connections 
from known addresses.  At least the Deployment Center could be protected in this fashion since 
it has a list of all known hosts that will participate in the framework.  Agent Guards could be 
designed to modify the list of allowed hosts when new encryption keys are obtained.  Of course, 
this does not preclude the possibility of an attack of the framework from a host that is listed in 
the “allowed host” list. 
 
A second possible solution would be to send a special message prelude or header that would be 
first examined when a new packet is starting to be received.  If the message header is not as 
expected, then the connection would be quickly closed. After a predetermined number of invalid 
messages from a host, that host could be added to the denied host list.  

4.2.4 Add More Specialized Reporting 
Currently, only general reporting messages are defined that consist of a severity indictor and a 
message parameter.  This messaging structure could be expanded to include very specific 
message types that a message number could identify.  The message text could then consist of an 
arbitrary binary array that could be parsed based on the message code.  This would introduce 
many more specialized messages without changing the message format. 
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In addition, the messages could be made to conform to the standards outside this project’s 
current scope.  Namely, we would suggest adding the message identifiers used for the CIDF 
GIDOs.     

4.2.5 Optimize the Code and the Libraries 
Much of the prototype code is redundant between agents, and we should create libraries to be 
linked into the applications.  This way, only one copy of the common code will need to be 
maintained. 

4.2.6 Software-based PKCS-11 Implementation 
The SIDF framework is heavily based on the PKCS-11 standard and hardware encryption.  We 
have decreased the cost for each host in the SIDF from $1000 per host down to less than $100 
per host by supporting Datakey devices in the framework. 
 
A software-based PKCS-11 implementation could decrease the cost of deploying the framework 
by $1,000 from the framework control side (the Deployment Center) and by $100 per each 
addition SIDF host.  We would suggest using a floppy/removable disk as the “token” within a 
software-based PKCS-11 implementation since the framework control would only have to be 
modified slightly. 
 
This option would allow the interspersing of differing types of security devices within the 
framework--PCMCIA tokens, Datakeys, and software keys. 
 
Some problems exist that preclude its immediate implementation.  First, a commercial company 
must release a software-based PKCS-11 implementation.  We have used Wetstone Technologies’ 
SMARTCrypt implementation and would like to continue with it.  Second, the software 
implementation must support the functions that we have currently implemented with the Luna 
and Datakey tokens.  Specifically, RSA algorithms must be included. 

4.2.7 Add Agent Types  
Additional types of agents should be added to the framework.  For example, several types of 
Analysis Agent skeletons could be created and stored in the software repository.  Each would 
have a specialized set of functions to receive data from similar typed Reconnaissance Agents.  
An Analysis Agent could be built to process NT event log data or another could specifically 
handle TCP/IP data.  This would allow each future developer access to a set of specialized 
functions and would free them from reinventing a lot of this basic functionality with each new 
agent created. 

4.2.8 Update Ethernet Capture Routines 
The Ethernet capture components should be updated so that they don’t depend on having an 
Ethernet packet-capture driver installed on the host that the TCP/IP Reconnaissance Agent is 
deployed.  We used a capture library that is specific to NT.  Much more dynamic libraries are 
now available.  Changing this feature would require that the TCP/IP ActiveX control be 
rewritten or replaced with a different control that doesn’t depend on the added protocol stacks. 
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4.2.9 Upgrade to Delphi 4 
During the development on this contract, Delphi 4 was released (late 1998).  Since we had 
substantial investment in the current version of Delphi and were not sure how easily the 
framework would port, we did not upgrade at that time.  Additionally, several of the third-party 
components that we used may not be compatible with Delphi 4. 
 
Delphi 4 has introduced several new features that could be useful within the framework and 
would reduce the number of third-party components used.  The risk associated with this move to 
Delphi 4,  range from the very simple task of recompiling each application to the extreme of 
having to rewrite major sections of the framework code.  The available of alternative 
implementations of functions and controls in Delphi 4 must be investigated before committing to 
this transition. 

4.2.10 Use fewer third party components    
With the upgrade to Delphi 4, some third-party components may not be required.  The 
availability of new ActiveX controls, the amount of effort to convert to new controls, and the 
additional functionality they might provide, needs to be investigated. 

4.2.11 Create a Custom Palette  
It is envisioned that a simpler way to develop new agents would be to have something similar to 
a “developer’s palette” for building agents.  We would like to extend the SIDF so that it could be 
included into a variety of environments in addition to Delphi.  From the user-selected 
environment, a palette of agents would be available.  For example, within a tool such as Visual 
Basic, a developer could select “Reconnaissance Agent” and drop a Reconnaissance Agent 
widget onto his form.  This action would create a Reconnaissance Agent, providing the 
developer access to all the properties, methods, and events of a SIDF Reconnaissance Agent.  
This concept would apply to all SIDF types of agents and could be expanded to include 
specialized agent type such as “Linux Audit Log Progressing Reconnaissance Agent” and “NT 
Privileged Process Monitor Reconnaissance Agent.” 

4.2.12 Compress Files and Messages 
No message or file compression is used within the SIDF.  The added benefit of smaller messages 
and files would greatly decrease the amount of data transmitted between components and 
enhance overall framework throughput.  The added processing time needed to perform data 
compression should be outweighed by the smaller amount of data that needs to be encrypted and 
transmitted. 

4.2.13 Automatic Deployment 
The current version of the SIDF needs to be manually configured.  This is especially tedious 
when starting up the framework for the first time.  A simple batch file format consisting of the 
name of the agent and the host to which to deploy the agent could be created.  The Deployment 
Center could read a startup deployment batch file and process each entry when it starts.  Another 
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less-automated approach is to allow the user to select a batch file for processing, so that each 
agent needn’t be deployed manually one at a time. 

4.2.14 Automatic SIDF State Archival 
In certain instances, it is useful to know the current state of the SIDF (a listing of all deployed 
components and the status of each).  Additionally, this state information could possibly be used 
to restore the SIDF to a previous state by comparing the current SIDF state with the previously 
saved one.  The appropriate deployment, retraction, and configuration commands could then be 
automatically issued to set the SIDF state.  

4.2.15 Automatically Find Associated Agent  
Analysis Agents and Reconnaissance Agents need superior agents to which to report 
information.  Decision-Response Agents and Analysis Agents need subordinate agents from 
which to receive and process information.  If these agents did not have superior and/or 
subordinate agents, their functionality would be greatly impaired.  Each agent, by the nature of 
its function, supplies or receives data.   
 
In the currently framework, the definition of an agent’s superior or subordinate is not encoded in 
the deployed agent at startup time.  The Directory Agent does contain the list of available agents 
and a newly deployed agent could query the Directory Agent for a list of possible superior or 
subordinate agents.  We don’t do this, though, because the granularity of the query results are not 
sufficiently detailed to automatically select a “correct” superior/subordinate.  For example, a 
TCP/IP Packet Reporting Reconnaissance Agent would not provide much useful data to an 
Analysis Agent that processes NT event logs. 

4.2.16 Upgrade Directory Agent 
The Directory Agent plays a very important role in the tracking the state of agents in the SIDF.  
The Directory Agent currently provides limited functionality in the ability to query for specific 
types of deployed-agent information.  A substantial set of additional information could be stored 
for each registered agent.  The Directory Agent grid defines some very basic information on each 
agent.  The data maintained on each agent is initially passed to the Directory Agent at agent 
registration time.  Additional agent-configuration data can be added to the registration message 
and new querying functions can be implemented for access.   
 
The Directory Agent collects SIDF state information by periodically polling agents.  The status 
messages returned by the agents simply indicate that the agent is still functioning but nothing 
more.  Also, nonreporting agents are listed but the Directory Agent makes no attempt to 
investigate the reason why agents are not reporting, nor does the Directory Agent report this 
anomaly to a superior agent or the user. 

4.2.17 Replay Attack Protection 
SIDF communication could be susceptible to a replay attack.   If a packet is captured, it could be 
resent to the receiving host computer(s).  The contents of the packet could not be modified, just 
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repeated.  The obvious answer to this type of attack is to place an incrementing counter into the 
packet.  This alteration of the packet would prevent the possibility of this type of attack.  

4.2.18 CIDF Incorporation 
The DARPA Common Intrusion Detection Framework (CIDF) is currently being revised.  We 
did not target the incorporation of CIDF into the SIDF initially for these reasons: 

• CIDF is a proposed standard, whereas the SIDF was a proposed implementation. 
• The SIDF was proposed approximately a year before the CIDF standard. 
• The CIDF standard has evolved during the SIDF contract but still has not been 

finalized. 
• We have provided input into the CIDF standard and several features are similar to 

those in the SIDF. 
• CIDF has been proposed to the IETF as a standard.  It may undergo substantial 

revision during this process. 
• We initially where going to use the CIDF message structure in the SIDF, but felt that 

it was not mature enough at the time of our implementation. 
• We have used a message format defined by a message grammar, which would allow 

us to change the message formats by simply modifying the message grammar. 
 
We feel that CIDF incorporation is possible into the SIDF, but would suggest waiting until the 
CIDF has been standardized. 

4.2.19 Send Initial Configuration Information 
When an agent is designed, developed, and built, it is configured with a set of initialization 
parameters.  If the application is run once or a dozen times, the startup configuration is identical 
each time (assuming that the application is not reading configuration parameters from different 
files).  Since configuration files cannot be deployed with agent executables in the current SIDF 
implementation, the startup of a deployed agent will be the same each time.  Messages can be 
sent to change the configuration of the agent once it is running.  An improvement to the 
framework would be to allow the passing of a set of command-line parameters or some other 
method by which an agent could be configured upon initialization after it was deployed. 

4.2.20 Deploy Additional Files with Agent 
The Agent Executables Database consists of a directory of executable files.  Each file was 
generated from an SIDF agent template, and it represents a standalone application that will be 
transmitted to another host in the framework.  Sometimes, based on the application functionality 
or a developer’s implementation, an application requires one or more external files.  Data and 
configuration files are two likely types of files that might be required by an application.  The 
current implementation of the SIDF does not provide a method for associating or transmitting 
supporting files with a deployed agent. 
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4.2.21 Add Auditing Functions 
Messages can be logged to the Storage Agent at the discretion of the developer (for internally 
logged messages) or the user (for interactively specified messages).  The SIDF does not 
automatically log events as they are generated.  For a higher degree of auditing, functions should 
automatically log each operation that occurs in the SIDF.  Levels of auditing can be specified to 
differentiate user-initiated vs. system-generated actions. 

4.2.22 Framework State Tracking 
The Directory Agent can track the SIDF’s state at a particular instance.  What the Directory 
Agent lacks are methods to track changes to the framework’s state.  A log or database could be 
set up that would indicate the cumulative status of the framework.  Information indicating the 
sequence of agent registering, reporting, and unregistering would be saved. 

4.2.23 Framework Traceability 
From the perspective of a forensic investigation tool, the SIDF does not have a very structured 
logging capability.  The addition of detailed logging and querying capabilities would provide 
information needed in a forensic investigation.  A framework snapshot would need to be 
maintained at periodic increments and as requested.  A log would show the actions and results 
that occurred in the framework.  A snapshot would show the current status of the framework (list 
of agents deployed) at the snapshot time.  Additional querying would return specific information 
on agent state and health.  It would also be important for the system to document all details, 
especially negative details.  For example, the knowledge that a particular agent was not running 
at a particular time could be more important than the list of agents that were running. 

4.2.24 Add Database Capabilities 
Database support could easily be added to the SIDF, and it would enhance data retrieval 
functions designed into SIDF agents and framework-control applications.  Currently only direct 
text-file access is supported.  Database functions would be especially useful for querying stored 
data that was collected by Reconnaissance Agents or processed by Analysis Agents. 

4.2.25 Agent Information Archival 
Instead of disposing of previously collected information (information saved from a previous 
deployment of the same agent), it would be possible for an agent to continue collecting 
information and posting it with the previous information collected.  This feature would be of use 
when a specific agent is deployed to a host, then retracted and later redeployed to the same host.  

4.2.26 Reduce Agent Guard Visual Component 
The current Agent Guard has been designed with a very robust user interface.  Mainly the 
interface has been used to test the functionality of agents and to provide visual indication of 
SIDF message transmission.  The Agent Guard could be revised to reduce and possibly remove 
the user interface.  It is envisioned that the Agent Guard would be created as an NT service that 
would be automatically started when a machine is rebooted.  The encryption functions would 
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still require the entry of a password that should not be stored locally on the host.  Within the 
implementation of this enhancement, a method of securely logging in the Agent Guard token 
would have to be addressed. 

4.2.27 Agent Visual Component Modification 
As with the Agent Guard, most agents are dependent on a visual user interface.  Some agents use 
the interface more extensively that others.  The basic format of the agent’s main screen is 
inherited from the Base Agent.  Although the Base Agent’s default screen does not add much to 
the operation of the derived agents, a minimal interface is required to place the nongraphical 
runtime components.  Possibly the graphical interface of the Base Agent could be removed, or a 
selection of main interface screens created so that a developer could select the most appropriate 
screen. 

4.2.28 Reduce Agent Dependency 
Each agent is dependent on it’s source files, shared source files, basic type of agent files (i.e., a 
TCP/IP Reconnaissance Agent depends on files used to build a generic Reconnaissance Agent), 
Base Agent project files, and SIDF message files.  Any change to a single one of these files 
requires each agent to be recompiled.  Based on the current method of inheritance, this problem 
cannot be easily corrected, but it can be reduced.   
 
Since the SIDF is in a state of being modified to enhance it’s capabilities, several source files are 
routinely changed which in turn requires SIDF components to be rebuilt.  It is possible that some 
commonly used functions could be moved to a dynamically linked library (DLL).  This action 
would allow some modification of SIDF without requiring component rebuilding.   

4.2.29 Add Deployment Management Console 
The Deployment Center allows deployment of individual agents.  A previously suggested 
enhancement would allow batch automatic deployment of agents.  Yet, in the configuration of a 
system is it difficult for a system administrator using the Deployment Center to get a clear 
understanding of the SIDF configuration and know what is deployed on which hosts at a 
particular time.   
 
We suggest adding a Deployment Management Console to the Deployment Center.  The 
Deployment Management Console would be a screen that presents a graphical view of the SIDF 
(a network map) with icons representing the hosts with interconnecting lines representing the 
network, and boxes representing the agents.  From the SIDF map, host and agent status would be 
retrieved by clicking on an icon.  Another feature would be the ability to deploy a new agent 
dragging an agent icon onto the desired host.  This modified view of the Deployment Center 
functionality would improve the overall operation of SIDF deployment and framework status. 
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5.0 Conclusions 

As was listed in the previous sections, the SIDF project has successfully proven itself.  The next 
step is to continue the use of this technology in new programs. 

5.1 Program Technologies 
The following is a list of the technologies and features incorporated into the SIDF: 

• Multiple Applications Developed 
• Multiple Operating Systems in Framework 
• Multiple Hosts (2-3 Windows NT 4.0 and one Red Hat Linux v5.2) 
• Multiple Processes Running on each Host 
• Framework Interprocess Communication 
• Security Standard--PKCS-11 
• Two types of Encryption Tokens (Luna/Datakey) 
• Delivery of Software Development Documents [over 500 pages] 
• Delivery of over 12 different pieces of software, including Reconnaissance Agents, 

Deployment Center, Agent Guard, etc. 
• Delivery and Integration of both Unix and NT components 
• Delivery of low level socket communication and TCP/IP components 

5.2 Future Programs 
Odyssey Research is actively pursuing additional opportunities that will make use of the SIDF 
and the technologies developed.  We continue to team with Wetstone Technologies on new 
programs that make use of hardware-encryption devices.  And we have continued to invest in the 
SIDF program by including it as part of other on-going efforts including the Omnisleuth 
forensics project as well as writing new proposals that incorporate SIDF as the baseline 
technology used.     



 

 34

6.0 References 

The following documents serve as references throughout this project: 
 
[Bis92] Matt Bishop.  A Model of Security Monitoring.  Department of Math and Computer 

Science, Dartmouth College, 1992. 
 

[Bis93] Matt Bishop. A Standard Audit Trail Format. Department of Math and Computer 
Science, Dartmouth College, 1993. 

 

 [Che94] William R. Cheswick and Steven M. Bellovin.  Firewalls and Internet Security.  
Addison-Wesley, 1994. 

 

 [Den96] Dorothy E. Denning.  Protection and Defense of Intrusion.  Georgetown University, 
March 1996. 

 

 [Far94] Daniel Farmer and Eugene H. Spafford.  The COPS Security Checker System.  Purdue 
University Technical Report, CSD-TR-993, January 1994. 

 

 [For94] Stephanie Forrest and Dipankar Dasgupta.  Novelty Detection in Time Series Data 
using Ideas from Immunology.  Department of Computer Science, University of New 
Mexico, 1994. 

 

 [For95] Stephanie Forrest, Alan Perelson, Lawrence Allen, and Rajesh Cherukuri.  A Change-
Detection Algorithm Inspired by the Immune System.  IEEE Transactions on Software 
Engineering, February 1995. 

 

 [For96] Stephanie Forrest, Patrik D’haeseleer, and Paul Helman.  An Immunological Approach 
to Change Detection: Algorithms, Analysis and Implications.  Department of Computer 
Science, University of New Mexico, 1996. 

 

 [Hlm90] L.T. Heberlein, K. N. Levitt, and B. Mukherjee.  A Method to Detect Intrusive Activity 
in a Networked Environment.  Proceedings of the 14th National Computer Security 
Conference, pp. 362–371, October 1991. 

 

 [Hoa95] James Hoagland, Christopher Wee, and Karl Levitt.  Audit Log Analysis Using the 
Visual Audit Browser Toolkit. UC Davis Computer Science Technical Report, September 
1995. 

 

 [Hos96F] Chester D. Hosmer, Jr.  Computer and Computer System Auditing and Intrusion 
Detection Monitoring, Future Development Forecast Analysis.  NY State Technology 
Enterprise Corporation & Odyssey Research Associates, September 1996. 

 

 [Hos96S] Chester D. Hosmer, Jr.  Computer and Computer System Auditing and Intrusion 
Detection Monitoring, State-of-the-Art Technology Survey.  NY State Technology 
Enterprise Corporation & Odyssey Research Associates, September 1996. 

 

 [Kim93] Gene H. Kim and Euguene H. Spafford.  The Design and Implementation of Tripwire: 
A File System Integrity Checker.  Purdue University Technical Report CSD-TR-93-071, 
November 1993. 

 



 

 35

 [Kim94] Gene H. Kim and Euguene H. Spafford.  Writing, Supporting, and Evaluating 
Tripwire: A Publicly Available Security Tool.  COAST Laboratory, Department of 
Computer Science, Purdue University, March 1994. 

 

[Kum95] Sandeep Kumar.  Classification and Detection of Computer Intrusions.  Doctoral 
Thesis, August 1995. 

 

 [Lev95] Karl N. Levitt, Steven Cheung, and Calvin Ko.  Intrusion Detection for Network 
Infrastructures.  Department of Computer Science, University of California Davis, 1995. 

 

 [Lev96] Steven Levy.  Wisecrackers.  Wired Magazine, pp. 128+, March 1996. 
 

 [Max90] Roy A. Maxion and Frank E. Feather.  A Case Study of Ethernet Anomalies in a 
Distributed Computing Environment.  Carnegie Mellon University, October 1990. 

 

 [Max93] Roy A. Maxion and Robert T. Olszewski.  Detection and Discrimination of Injected 
Network Faults.  School of Computer Science, Carnegie Mellon University, June 1993. 

 

 [Neu94] Michael Neuman.  Monitoring and Controlling Suspicious Activity in Real-time with 
IP-Watcher.  En Garde Systems, 1994. 

 

 [Riv92] R.L. Rivest.  RFC 1321: “The md5 message-digest algorithm.”  Technical report, 
Internet Activities Board, April 1992. 

 

 [Soh95] B.C. Soh and T.S. Dillon.  Setting optimal intrusion-detection thresholds.  Computers & 
Security, Vol. 14, No. 7, 1995. 

 

[Spa91] Eugene H. Spafford.  OPUS: Preventing Weak Password Choices.  Purdue University 
Technical Report CSD-TR-92-028, June 1991. 

 

 [Spa94] Gene Spafford and Mark Crosbie.  Defending a Computer System using Autonomous 
Agents.  Department of Computer Science, Purdue University, February 1994. 

 

 [Spa95] Gene Spafford and Mark Crosbie.  Active Defense of a Computer System using 
Autonomous Agents.  Department of Computer Science, Purdue University, February 
1995. 

 

 [Ste94] Richard W. Stevens.  TCP/IP Illustrated, Volumes 1, 2 & 3.  Addison-Wesley 
Publishing Company, March 1996 

 
 [Sto96] Salvatore J. Stolfo and Philip K. Chan.  On the Accuracy of Meta-learning for Scalable 

Data Mining.  Department of Computer Science, Columbia University, 1996. 
 

 [Win90] J.R. Winkler and W.J. Page.  Intrusion and Anomaly Detection in Trusted 
Systems.  Planning Research Corporation, Government Information Systems, 
1990. 

 




